Osmotic stress and viscous retardation of the Na,K-ATPase ion pump.
نویسندگان
چکیده
The transport function of the Na pump (Na,K-ATPase) in cellular ion homeostasis involves both nucleotide binding reactions in the cytoplasm and alternating aqueous exposure of inward- and outward-facing ion binding sites. An osmotically active, nonpenetrating polymer (poly(ethyleneglycol); PEG) and a modifier of the aqueous viscosity (glycerol) were used to probe the overall and partial enzymatic reactions of membranous Na,K-ATPase from shark salt glands. Both inhibit the steady-state Na,K-ATPase as well as Na-ATPase activity, whereas the K(+)-dependent phosphatase activity is little affected by up to 50% of either. Both Na,K-ATPase and Na-ATPase activities are inversely proportional to the viscosity of glycerol solutions in which the membranes are suspended, in accordance with Kramers' theory for strong coupling of fluctuations at the active site to solvent mobility in the aqueous environment. PEG decreases the affinity for Tl(+) (a congener for K(+)), whereas glycerol increases that for the nucleotides ATP and ADP in the presence of NaCl but has little effect on the affinity for Tl(+). From the dependence on osmotic stress induced by PEG, the aqueous activation volume for the Na,K-ATPase reaction is estimated to be approximately 5-6 nm(3) (i.e., approximately 180 water molecules), approximately half this for Na-ATPase, and essentially zero for p-nitrophenol phosphatase. The change in aqueous hydrated volume associated with the binding of Tl(+) is in the region of 9 nm(3). Analysis of 15 crystal structures of the homologous Ca-ATPase reveals an increase in PEG-inaccessible water space of approximately 22 nm(3) between the E(1)-nucleotide bound forms and the E(2)-thapsigargin forms, showing that the experimental activation volumes for Na,K-ATPase are of a magnitude comparable to the overall change in hydration between the major E(1) and E(2) conformations of the Ca-ATPase.
منابع مشابه
O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملبررسی سلولی تومور و مکانیابی آنزیم Na+, K+-ATPase در موش توموری شده (Balb/c nu) با استفاده از رده سلولی 4T1
Background and purpose: The 4T1 cell line is a laboratory model used in the study of tumors biology. This cell line is very tumorigenic with high metastatic capacity in different organs. In this study, histology and immunohistochemistry methods were used to investigate the structure and localization of Na+/K+- ATPase enzyme in 4T1 cells induced breast cancer tumor in Balb/c nu mice. Material...
متن کاملThe ionic basis of the hypo-osmotic depolarization in neurons from the opisthobranch mollusc Elysia chlorotica.
The resting potential of identified cells (Parker cells) in the abdominal ganglion of Elysia chlorotica (Gould) depolarizes by about 30 mV in response to a 50% reduction in osmolality and returns to the original potential in 20 min. Cell volume recovery requires approximately 2 h. Thus, recovery of the resting potential is not dependent on recovery of cell volume. The hypo-osmotic depolarizatio...
متن کاملEffect of Salinity and Alkalinity on Luciobarbus capito Gill Na+/K+-ATPase Enzyme Activity, Plasma Ion Concentration, and Osmotic Pressure
We evaluated the individual and combined effects of salinity and alkalinity on gill Na+/K+-ATPase enzyme activity, plasma ion concentration, and osmotic pressure in Luciobarbus capito. Increasing salinity concentrations (5, 8, 11, and 14 g/L) were associated with an initial increase and then decrease in L. capito gill Na+/K+-ATPase activity. Activity was affected by the difference between inter...
متن کاملThe responses of L-gulonolactone oxidase and HKT2;1 genes in Aeluropus littoralis’ shoots under high concentration of sodium chloride
Salinity is one of the most important abiotic stresses that limit crop growth and production. Salt stress influences plants in two ways: by affecting ion toxicity and increasing osmotic stress. Ion homeostasis, the excretion of Na+ and using antioxidant systems are the major strategies of salt tolerance in plants. Na+ and K+ transporters with enzymes that are involved in detoxification of react...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 94 7 شماره
صفحات -
تاریخ انتشار 2008